Semantic Interpretation and Validation of Graph Attention-based Explanations for GNN Models
In this work, we propose a methodology for investigating the application of semantic attention to enhance the explainability of Graph Neural Network (GNN)-based models, introducing semantically-informed perturbations and establishing a correlation between predicted feature-importance weights and model accuracy. Graph Deep Learning (GDL) has emerged as a promising field for tasks like scene interpretation, leveraging flexible graph structures to concisely describe complex features and relationships. As traditional explainability methods used in eXplainable AI (XAI) cannot be directly applied to such structures, graph-specific approaches are introduced. Attention mechanisms have demonstrated their efficacy in estimating the importance of input features in deep learning models and thus have been previously employed to provide feature-based explanations for GNN predictions. Building upon these insights, we extend existing attention-based graph-explainability methods investigating the use of attention weights as importance indicators of semantically sorted feature sets. Through analysing the behaviour of predicted attention-weights distribution in correlation with model accuracy, we gain valuable insights into feature importance with respect to the behaviour of the GNN model. We apply our methodology to a lidar pointcloud estimation model successfully identifying key semantic classes that contribute to enhanced performance effectively generating reliable post-hoc semantic explanations.
READ FULL TEXT