Semantic Features Aided Multi-Scale Reconstruction of Inter-Modality Magnetic Resonance Images

06/22/2020
by   Preethi Srinivasan, et al.
0

Long acquisition time (AQT) due to series acquisition of multi-modality MR images (especially T2 weighted images (T2WI) with longer AQT), though beneficial for disease diagnosis, is practically undesirable. We propose a novel deep network based solution to reconstruct T2W images from T1W images (T1WI) using an encoder-decoder architecture. The proposed learning is aided with semantic features by using multi-channel input with intensity values and gradient of image in two orthogonal directions. A reconstruction module (RM) augmenting the network along with a domain adaptation module (DAM) which is an encoder-decoder model built-in with sharp bottleneck module (SBM) is trained via modular training. The proposed network significantly reduces the total AQT with negligible qualitative artifacts and quantitative loss (reconstructs one volume in approximately 1 second). The testing is done on publicly available dataset with real MR images, and the proposed network shows (approximately 1dB) increase in PSNR over SOTA.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset