Semantic bottleneck for computer vision tasks

11/06/2018
by   Maxime Bucher, et al.
4

This paper introduces a novel method for the representation of images that is semantic by nature, addressing the question of computation intelligibility in computer vision tasks. More specifically, our proposition is to introduce what we call a semantic bottleneck in the processing pipeline, which is a crossing point in which the representation of the image is entirely expressed with natural language , while retaining the efficiency of numerical representations. We show that our approach is able to generate semantic representations that give state-of-the-art results on semantic content-based image retrieval and also perform very well on image classification tasks. Intelligibility is evaluated through user centered experiments for failure detection.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset