Self-Supervised Test-Time Learning for Reading Comprehension

03/20/2021
by   Pratyay Banerjee, et al.
8

Recent work on unsupervised question answering has shown that models can be trained with procedurally generated question-answer pairs and can achieve performance competitive with supervised methods. In this work, we consider the task of unsupervised reading comprehension and present a method that performs "test-time learning" (TTL) on a given context (text passage), without requiring training on large-scale human-authored datasets containing context-question-answer triplets. This method operates directly on a single test context, uses self-supervision to train models on synthetically generated question-answer pairs, and then infers answers to unseen human-authored questions for this context. Our method achieves accuracies competitive with fully supervised methods and significantly outperforms current unsupervised methods. TTL methods with a smaller model are also competitive with the current state-of-the-art in unsupervised reading comprehension.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro