Self-supervised self-supervision by combining deep learning and probabilistic logic

12/23/2020
by   Hunter Lang, et al.
0

Labeling training examples at scale is a perennial challenge in machine learning. Self-supervision methods compensate for the lack of direct supervision by leveraging prior knowledge to automatically generate noisy labeled examples. Deep probabilistic logic (DPL) is a unifying framework for self-supervised learning that represents unknown labels as latent variables and incorporates diverse self-supervision using probabilistic logic to train a deep neural network end-to-end using variational EM. While DPL is successful at combining pre-specified self-supervision, manually crafting self-supervision to attain high accuracy may still be tedious and challenging. In this paper, we propose Self-Supervised Self-Supervision (S4), which adds to DPL the capability to learn new self-supervision automatically. Starting from an initial "seed," S4 iteratively uses the deep neural network to propose new self supervision. These are either added directly (a form of structured self-training) or verified by a human expert (as in feature-based active learning). Experiments show that S4 is able to automatically propose accurate self-supervision and can often nearly match the accuracy of supervised methods with a tiny fraction of the human effort.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro