Self-Supervised Deep Image Denoising

01/29/2019
by   Samuli Laine, et al.
0

We describe techniques for training high-quality image denoising models that require only single instances of corrupted images as training data. Inspired by a recent technique that removes the need for supervision through image pairs by employing networks with a "blind spot" in the receptive field, we address two of its shortcomings: inefficient training and somewhat disappointing final denoising performance. This is achieved through a novel blind-spot convolutional network architecture that allows efficient self-supervised training, as well as application of Bayesian distribution prediction on output colors. Together, they bring the self-supervised model on par with fully supervised deep learning techniques in terms of both quality and training speed in the case of i.i.d. Gaussian noise.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset