Self-supervised Contrastive Learning of Multi-view Facial Expressions

08/15/2021
by   Shuvendu Roy, et al.
0

Facial expression recognition (FER) has emerged as an important component of human-computer interaction systems. Despite recent advancements in FER, performance often drops significantly for non-frontal facial images. We propose Contrastive Learning of Multi-view facial Expressions (CL-MEx) to exploit facial images captured simultaneously from different angles towards FER. CL-MEx is a two-step training framework. In the first step, an encoder network is pre-trained with the proposed self-supervised contrastive loss, where it learns to generate view-invariant embeddings for different views of a subject. The model is then fine-tuned with labeled data in a supervised setting. We demonstrate the performance of the proposed method on two multi-view FER datasets, KDEF and DDCF, where state-of-the-art performances are achieved. Further experiments show the robustness of our method in dealing with challenging angles and reduced amounts of labeled data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset