Self-recovery of memory via generative replay

01/15/2023
by   Zhenglong Zhou, et al.
0

A remarkable capacity of the brain is its ability to autonomously reorganize memories during offline periods. Memory replay, a mechanism hypothesized to underlie biological offline learning, has inspired offline methods for reducing forgetting in artificial neural networks in continual learning settings. A memory-efficient and neurally-plausible method is generative replay, which achieves state of the art performance on continual learning benchmarks. However, unlike the brain, standard generative replay does not self-reorganize memories when trained offline on its own replay samples. We propose a novel architecture that augments generative replay with an adaptive, brain-like capacity to autonomously recover memories. We demonstrate this capacity of the architecture across several continual learning tasks and environments.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset