Self-Organized Variational Autoencoders (Self-VAE) for Learned Image Compression

05/25/2021
by   M. Akin Yilmaz, et al.
0

In end-to-end optimized learned image compression, it is standard practice to use a convolutional variational autoencoder with generalized divisive normalization (GDN) to transform images into a latent space. Recently, Operational Neural Networks (ONNs) that learn the best non-linearity from a set of alternatives, and their self-organized variants, Self-ONNs, that approximate any non-linearity via Taylor series have been proposed to address the limitations of convolutional layers and a fixed nonlinear activation. In this paper, we propose to replace the convolutional and GDN layers in the variational autoencoder with self-organized operational layers, and propose a novel self-organized variational autoencoder (Self-VAE) architecture that benefits from stronger non-linearity. The experimental results demonstrate that the proposed Self-VAE yields improvements in both rate-distortion performance and perceptual image quality.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro