Self-informed neural network structure learning

12/20/2014
by   David Warde-Farley, et al.
0

We study the problem of large scale, multi-label visual recognition with a large number of possible classes. We propose a method for augmenting a trained neural network classifier with auxiliary capacity in a manner designed to significantly improve upon an already well-performing model, while minimally impacting its computational footprint. Using the predictions of the network itself as a descriptor for assessing visual similarity, we define a partitioning of the label space into groups of visually similar entities. We then augment the network with auxilliary hidden layer pathways with connectivity only to these groups of label units. We report a significant improvement in mean average precision on a large-scale object recognition task with the augmented model, while increasing the number of multiply-adds by less than 3

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset