Self-Adaptive Systems in Organic Computing: Strategies for Self-Improvement

08/08/2018
by   Andreas Niederquell, et al.
0

With the intensified use of intelligent things, the demands on the technological systems are increasing permanently. A possible approach to meet the continuously changing challenges is to shift the system integration from design to run-time by using adaptive systems. Diverse adaptivity properties, so-called self-* properties, form the basis of these systems and one of the properties is self-improvement. It describes the ability of a system not only to adapt to a changing environment according to a predefined model, but also the capability to adapt the adaptation logic of the whole system. In this paper, a closer look is taken at the structure of self-adaptive systems. Additionally, the systems' ability to improve themselves during run-time is described from the perspective of Organic Computing. Furthermore, four different strategies for self-improvement are presented, following the taxonomy of self-adaptation suggested by Christian Krupitzer et al.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro