Self-adaptive exploration in evolutionary search
We address a primary question of computational as well as biological research on evolution: How can an exploration strategy adapt in such a way as to exploit the information gained about the problem at hand? We first introduce an integrated formalism of evolutionary search which provides a unified view on different specific approaches. On this basis we discuss the implications of indirect modeling (via a "genotype-phenotype mapping") on the exploration strategy. Notions such as modularity, pleiotropy and functional phenotypic complex are discussed as implications. Then, rigorously reflecting the notion of self-adaptability, we introduce a new definition that captures self-adaptability of exploration: different genotypes that map to the same phenotype may represent (also topologically) different exploration strategies; self-adaptability requires a variation of exploration strategies along such a "neutral space". By this definition, the concept of neutrality becomes a central concern of this paper. Finally, we present examples of these concepts: For a specific grammar-type encoding, we observe a large variability of exploration strategies for a fixed phenotype, and a self-adaptive drift towards short representations with highly structured exploration strategy that matches the "problem's structure".
READ FULL TEXT