Self-Adaptive Driving in Nonstationary Environments through Conjectural Online Lookahead Adaptation
Powered by deep representation learning, reinforcement learning (RL) provides an end-to-end learning framework capable of solving self-driving (SD) tasks without manual designs. However, time-varying nonstationary environments cause proficient but specialized RL policies to fail at execution time. For example, an RL-based SD policy trained under sunny days does not generalize well to rainy weather. Even though meta learning enables the RL agent to adapt to new tasks/environments, its offline operation fails to equip the agent with online adaptation ability when facing nonstationary environments. This work proposes an online meta reinforcement learning algorithm based on the conjectural online lookahead adaptation (COLA). COLA determines the online adaptation at every step by maximizing the agent's conjecture of the future performance in a lookahead horizon. Experimental results demonstrate that under dynamically changing weather and lighting conditions, the COLA-based self-adaptive driving outperforms the baseline policies in terms of online adaptability. A demo video, source code, and appendixes are available at https://github.com/Panshark/COLA
READ FULL TEXT