Selective Cascade of Residual ExtraTrees

09/29/2020
by   Qimin Liu, et al.
0

We propose a novel tree-based ensemble method named Selective Cascade of Residual ExtraTrees (SCORE). SCORE draws inspiration from representation learning, incorporates regularized regression with variable selection features, and utilizes boosting to improve prediction and reduce generalization errors. We also develop a variable importance measure to increase the explainability of SCORE. Our computer experiments show that SCORE provides comparable or superior performance in prediction against ExtraTrees, random forest, gradient boosting machine, and neural networks; and the proposed variable importance measure for SCORE is comparable to studied benchmark methods. Finally, the predictive performance of SCORE remains stable across hyper-parameter values, suggesting potential robustness to hyperparameter specification.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset