Selection Strategies for Commonsense Knowledge
Selection strategies are broadly used in first-order logic theorem proving to select those parts of a large knowledge base that are necessary to proof a theorem at hand. Usually, these selection strategies do not take the meaning of symbol names into account. In knowledge bases with commonsense knowledge, symbol names are usually chosen to have a meaning and this meaning provides valuable information for selection strategies. We introduce the vector-based selection strategy, a purely statistical selection technique for commonsense knowledge based on word embeddings. We compare different commonsense knowledge selection techniques for the purpose of theorem proving and demonstrate the usefulness of vector-based selection with a case study.
READ FULL TEXT