Selecting Data Adaptive Learner from Multiple Deep Learners using Bayesian Networks

08/18/2020
by   Shusuke Kobayashi, et al.
0

A method to predict time-series using multiple deep learners and a Bayesian network is proposed. In this study, the input explanatory variables are Bayesian network nodes that are associated with learners. Training data are divided using K-means clustering, and multiple deep learners are trained depending on the cluster. A Bayesian network is used to determine which deep learner is in charge of predicting a time-series. We determine a threshold value and select learners with a posterior probability equal to or greater than the threshold value, which could facilitate more robust prediction. The proposed method is applied to financial time-series data, and the predicted results for the Nikkei 225 index are demonstrated.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro