Segmenting Brain Tumors with Symmetry

11/17/2017
by   Hejia Zhang, et al.
0

We explore encoding brain symmetry into a neural network for a brain tumor segmentation task. A healthy human brain is symmetric at a high level of abstraction, and the high-level asymmetric parts are more likely to be tumor regions. Paying more attention to asymmetries has the potential to boost the performance in brain tumor segmentation. We propose a method to encode brain symmetry into existing neural networks and apply the method to a state-of-the-art neural network for medical imaging segmentation. We evaluate our symmetry-encoded network on the dataset from a brain tumor segmentation challenge and verify that the new model extracts information in the training images more efficiently than the original model.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset