Segmentation Loss Odyssey

05/27/2020
by   Jun Ma, et al.
0

Loss functions are one of the crucial ingredients in deep learning-based medical image segmentation methods. Many loss functions have been proposed in existing literature, but are studied separately or only investigated with few other losses. In this paper, we present a systematic taxonomy to sort existing loss functions into four meaningful categories. This helps to reveal links and fundamental similarities between them. Moreover, we explore the relationship between the traditional region-based and the more recent boundary-based loss functions. The PyTorch implementations of these loss functions are publicly available at <https://github.com/JunMa11/SegLoss>.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro