Segmentation-Aware Hyperspectral Image Classification

05/22/2019
by   Berkan Demirel, et al.
0

In this paper, we propose an unified hyperspectral image classification method which takes three-dimensional hyperspectral data cube as an input and produces a classification map. In the proposed method, a deep neural network which uses spectral and spatial information together with residual connections, and pixel affinity network based segmentation-aware superpixels are used together. In the architecture, segmentation-aware superpixels run on the initial classification map of deep residual network, and apply majority voting on obtained results. Experimental results show that our propoped method yields state-of-the-art results in two benchmark datasets. Moreover, we also show that the segmentation-aware superpixels have great contribution to the success of hyperspectral image classification methods in cases where training data is insufficient.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset