Segment-Based Credit Scoring Using Latent Clusters in the Variational Autoencoder

Identifying customer segments in retail banking portfolios with different risk profiles can improve the accuracy of credit scoring. The Variational Autoencoder (VAE) has shown promising results in different research domains, and it has been documented the powerful information embedded in the latent space of the VAE. We use the VAE and show that transforming the input data into a meaningful representation, it is possible to steer configurations in the latent space of the VAE. Specifically, the Weight of Evidence (WoE) transformation encapsulates the propensity to fall into financial distress and the latent space in the VAE preserves this characteristic in a well-defined clustering structure. These clusters have considerably different risk profiles and therefore are suitable not only for credit scoring but also for marketing and customer purposes. This new clustering methodology offers solutions to some of the challenges in the existing clustering algorithms, e.g., suggests the number of clusters, assigns cluster labels to new customers, enables cluster visualization, scales to large datasets, captures non-linear relationships among others. Finally, for portfolios with a large number of customers in each cluster, developing one classifier model per cluster can improve the credit scoring assessment.


Learning Latent Representations of Bank Customers With The Variational Autoencoder

Learning data representations that reflect the customers' creditworthine...

Variational Auto Encoder Gradient Clustering

Clustering using deep neural network models have been extensively studie...

Unsupervised Clustering of Roman Potsherds via Variational Autoencoders

In this paper we propose an artificial intelligence imaging solution to ...

Bagging Supervised Autoencoder Classifier for Credit Scoring

Credit scoring models, which are among the most potent risk management t...

retina-VAE: Variationally Decoding the Spectrum of Macular Disease

In this paper, we seek a clinically-relevant latent code for representin...

Quantifying Credit Portfolio sensitivity to asset correlations with interpretable generative neural networks

In this research, we propose a novel approach for the quantification of ...

Estimating the Value-at-Risk by Temporal VAE

Estimation of the value-at-risk (VaR) of a large portfolio of assets is ...

Please sign up or login with your details

Forgot password? Click here to reset