Seeing Through the Glass: Neural 3D Reconstruction of Object Inside a Transparent Container

03/24/2023
by   Jinguang Tong, et al.
0

In this paper, we define a new problem of recovering the 3D geometry of an object confined in a transparent enclosure. We also propose a novel method for solving this challenging problem. Transparent enclosures pose challenges of multiple light reflections and refractions at the interface between different propagation media e.g. air or glass. These multiple reflections and refractions cause serious image distortions which invalidate the single viewpoint assumption. Hence the 3D geometry of such objects cannot be reliably reconstructed using existing methods, such as traditional structure from motion or modern neural reconstruction methods. We solve this problem by explicitly modeling the scene as two distinct sub-spaces, inside and outside the transparent enclosure. We use an existing neural reconstruction method (NeuS) that implicitly represents the geometry and appearance of the inner subspace. In order to account for complex light interactions, we develop a hybrid rendering strategy that combines volume rendering with ray tracing. We then recover the underlying geometry and appearance of the model by minimizing the difference between the real and hybrid rendered images. We evaluate our method on both synthetic and real data. Experiment results show that our method outperforms the state-of-the-art (SOTA) methods. Codes and data will be available at https://github.com/hirotong/ReNeuS

READ FULL TEXT

page 1

page 6

page 8

research
08/25/2022

Polarimetric Inverse Rendering for Transparent Shapes Reconstruction

In this work, we propose a novel method for the detailed reconstruction ...
research
05/20/2021

Dense Reconstruction of Transparent Objects by Altering Incident Light Paths Through Refraction

This paper addresses the problem of reconstructing the surface shape of ...
research
03/20/2023

NeTO:Neural Reconstruction of Transparent Objects with Self-Occlusion Aware Refraction-Tracing

We present a novel method, called NeTO, for capturing 3D geometry of sol...
research
04/22/2020

Through the Looking Glass: Neural 3D Reconstruction of Transparent Shapes

Recovering the 3D shape of transparent objects using a small number of u...
research
05/27/2023

NeRO: Neural Geometry and BRDF Reconstruction of Reflective Objects from Multiview Images

We present a neural rendering-based method called NeRO for reconstructin...
research
09/19/2020

Differentiable Refraction-Tracing for Mesh Reconstruction of Transparent Objects

Capturing the 3D geometry of transparent objects is a challenging task, ...
research
03/29/2021

Refractive Light-Field Features for Curved Transparent Objects in Structure from Motion

Curved refractive objects are common in the human environment, and have ...

Please sign up or login with your details

Forgot password? Click here to reset