Secure Transmission and Self-Energy Recycling for Wireless-Powered Relay Systems with Partial Eavesdropper Channel State Information

12/29/2017
by   Jingping Qiao, et al.
0

This paper focuses on the secure transmission of wireless-powered relay systems with imperfect eavesdropper channel state information (ECSI). For efficient energy transfer and information relaying, a novel two-phase protocol is proposed, in which the relay operates in full-duplex (FD) mode to achieve simultaneous wireless power and information transmission. Compared with those existing protocols, the proposed design possesses two main advantages: 1) it fully exploits the available hardware resource (antenna element) of relay and can offer higher secrecy rate; 2) it enables self-energy recycling (S-ER) at relay, in which the loopback interference (LI) generated by FD operation is harvested and reused for information relaying. To maximize the worst-case secrecy rate (WCSR) through jointly designing the source and relay beamformers coupled with the power allocation ratio, an optimization problem is formulated. This formulated problem is proved to be non-convex and the challenge to solve it is how to concurrently solve out the beamformers and the power allocation ratio. To cope with this difficulty, an alternative approach is proposed by converting the original problem into three subproblems. By solving these subproblems iteratively, the closed form solutions of robust beamformers and power allocation ratio for the original problem are achieved. Simulations are done and results reveal that the proposed S-ER based secure transmission scheme outperforms the traditional time-switching based relaying (TSR) scheme at a maximum WCSR gain of 80 the scheme reusing idle antennas for information reception is much better than that of schemes exploiting only one receive antenna.

READ FULL TEXT

page 4

page 6

page 7

page 8

page 9

page 10

page 11

page 12

research
01/13/2018

Secure Communications in NOMA System: Subcarrier Assignment and Power Allocation

Secure communication is a promising technology for wireless networks bec...
research
03/24/2019

Full-Duplex MIMO-OFDM Communication with Self-Energy Recycling

This paper focuses on energy recycling in full-duplex (FD) relaying mult...
research
07/02/2020

Secure Beamforming and Ergodic Secrecy Rate Analysis for Amplify-and-Forward Relay Networks with Wireless Powered Jammer

In this correspondence, we consider an amplify-and-forward relay network...
research
09/02/2018

Secure transmission with covert requirement in untrusted relaying networks

In this paper, we study the problem of secure transmission with covert r...
research
07/07/2023

A Joint Design for Full-duplex OFDM AF Relay System with Precoded Short Guard Interval

In-band full-duplex relay (FDR) has attracted much attention as an effec...
research
05/21/2018

Improving Anti-Eavesdropping Ability without Eavesdropper's CSI: A Practical Secure Transmission Design Perspective

This letter studies the practical design of secure transmissions without...
research
01/05/2018

Energy Efficiency Maximization of Full-Duplex Two-Way Relay With Non-Ideal Power Amplifiers and Non-Negligible Circuit Power

In this paper, we maximize the energy efficiency (EE) of full-duplex (FD...

Please sign up or login with your details

Forgot password? Click here to reset