Secure Federated Learning in 5G Mobile Networks

04/14/2020 ∙ by Martin Isaksson, et al. ∙ 0

Machine Learning (ML) is an important enabler for optimizing, securing and managing mobile networks. This leads to increased collection and processing of data from network functions, which in turn may increase threats to sensitive end-user information. Consequently, mechanisms to reduce threats to end-user privacy are needed to take full advantage of ML. We seamlessly integrate Federated Learning (FL) into the 3GPP 5G Network Data Analytics (NWDA) architecture, and add a Multi-Party Computation (MPC) protocol for protecting the confidentiality of local updates. We evaluate the protocol and find that it has much lower overhead than previous work, without affecting ML performance.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.