Second-Order Word Embeddings from Nearest Neighbor Topological Features

05/23/2017
by   Denis Newman-Griffis, et al.
0

We introduce second-order vector representations of words, induced from nearest neighborhood topological features in pre-trained contextual word embeddings. We then analyze the effects of using second-order embeddings as input features in two deep natural language processing models, for named entity recognition and recognizing textual entailment, as well as a linear model for paraphrase recognition. Surprisingly, we find that nearest neighbor information alone is sufficient to capture most of the performance benefits derived from using pre-trained word embeddings. Furthermore, second-order embeddings are able to handle highly heterogeneous data better than first-order representations, though at the cost of some specificity. Additionally, augmenting contextual embeddings with second-order information further improves model performance in some cases. Due to variance in the random initializations of word embeddings, utilizing nearest neighbor features from multiple first-order embedding samples can also contribute to downstream performance gains. Finally, we identify intriguing characteristics of second-order embedding spaces for further research, including much higher density and different semantic interpretations of cosine similarity.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset