Searching for Robustness: Loss Learning for Noisy Classification Tasks

02/27/2021
by   Boyan Gao, et al.
0

We present a "learning to learn" approach for automatically constructing white-box classification loss functions that are robust to label noise in the training data. We parameterize a flexible family of loss functions using Taylor polynomials, and apply evolutionary strategies to search for noise-robust losses in this space. To learn re-usable loss functions that can apply to new tasks, our fitness function scores their performance in aggregate across a range of training dataset and architecture combinations. The resulting white-box loss provides a simple and fast "plug-and-play" module that enables effective noise-robust learning in diverse downstream tasks, without requiring a special training procedure or network architecture. The efficacy of our method is demonstrated on a variety of datasets with both synthetic and real label noise, where we compare favourably to previous work.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset