Score Attack: A Lower Bound Technique for Optimal Differentially Private Learning
Achieving optimal statistical performance while ensuring the privacy of personal data is a challenging yet crucial objective in modern data analysis. However, characterizing the optimality, particularly the minimax lower bound, under privacy constraints is technically difficult. To address this issue, we propose a novel approach called the score attack, which provides a lower bound on the differential-privacy-constrained minimax risk of parameter estimation. The score attack method is based on the tracing attack concept in differential privacy and can be applied to any statistical model with a well-defined score statistic. It can optimally lower bound the minimax risk of estimating unknown model parameters, up to a logarithmic factor, while ensuring differential privacy for a range of statistical problems. We demonstrate the effectiveness and optimality of this general method in various examples, such as the generalized linear model in both classical and high-dimensional sparse settings, the Bradley-Terry-Luce model for pairwise comparisons, and nonparametric regression over the Sobolev class.
READ FULL TEXT