Sci-Net: a Scale Invariant Model for Building Detection from Aerial Images

11/12/2021
by   Hasan Nasrallah, et al.
15

Buildings' segmentation is a fundamental task in the field of earth observation and aerial imagery analysis. Most existing deep learning based algorithms in the literature can be applied on fixed or narrow-ranged spatial resolution imagery. In practical scenarios, users deal with a wide spectrum of images resolution and thus, often need to resample a given aerial image to match the spatial resolution of the dataset used to train the deep learning model. This however, would result in a severe degradation in the quality of the output segmentation masks. To deal with this issue, we propose in this research a Scale-invariant neural network (Sci-Net) that is able to segment buildings present in aerial images at different spatial resolutions. Specifically, we modified the U-Net architecture and fused it with dense Atrous Spatial Pyramid Pooling (ASPP) to extract fine-grained multi-scale representations. We compared the performance of our proposed model against several state of the art models on the Open Cities AI dataset, and showed that Sci-Net provides a steady improvement margin in performance across all resolutions available in the dataset.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro