Scheduling to Approximate Minimization Objectives on Identical Machines

04/21/2019
by   Benjamin Moseley, et al.
0

This paper considers scheduling on identical machines. The scheduling objective considered in this paper generalizes most scheduling minimization problems. In the problem, there are n jobs and each job j is associated with a monotonically increasing function g_j. The goal is to design a schedule that minimizes ∑_j ∈ [n] g_j(C_j) where C_j is the completion time of job j in the schedule. An O(1)-approximation is known for the single machine case. On multiple machines, this paper shows that if the scheduler is required to be either non-migratory or non-preemptive then any algorithm has an unbounded approximation ratio. Using preemption and migration, this paper gives a O( nP)-approximation on multiple machines, the first result on multiple machines. These results imply the first non-trivial positive results for several special cases of the problem considered, such as throughput minimization and tardiness. Natural linear programs known for the problem have a poor integrality gap. The results are obtained by strengthening a natural linear program for the problem with a set of covering inequalities we call job cover inequalities. This linear program is rounded to an integral solution by building on quasi-uniform sampling and rounding techniques.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset