Scheduling on Hybrid Platforms: Improved Approximability Window

12/06/2019
by   Vincent Fagnon, et al.
0

Modern platforms are using accelerators in conjunction with standard processing units in order to reduce the running time of specific operations, such as matrix operations, and improve their performance. Scheduling on such hybrid platforms is a challenging problem since the algorithms used for the case of homogeneous resources do not adapt well. In this paper we consider the problem of scheduling a set of tasks subject to precedence constraints on hybrid platforms, composed of two types of processing units. We propose a (3+2√(2))-approximation algorithm and a conditional lower bound of 3 on the approximation ratio. These results improve upon the 6-approximation algorithm proposed by Kedad-Sidhoum et al. as well as the lower bound of 2 due to Svensson for identical machines. Our algorithm is inspired by the former one and distinguishes the allocation and the scheduling phases. However, we propose a different allocation procedure which, although is less efficient for the allocation sub-problem, leads to an improved approximation ratio for the whole scheduling problem. This approximation ratio actually decreases when the number of processing units of each type is close and matches the conditional lower bound when they are equal.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset