Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations

06/04/2019
by   Vincent Sitzmann, et al.
0

The advent of deep learning has given rise to neural scene representations - learned mathematical models of a 3D environment. However, many of these representations do not explicitly reason about geometry and thus do not account for the underlying 3D structure of the scene. In contrast, geometric deep learning has explored 3D-structure-aware representations of scene geometry, but requires explicit 3D supervision. We propose Scene Representation Networks (SRNs), a continuous, 3D-structure-aware scene representation that encodes both geometry and appearance. SRNs represent scenes as continuous functions that map world coordinates to a feature representation of local scene properties. By formulating the image formation as a differentiable ray-marching algorithm, SRNs can be trained end-to-end from only 2D observations, without access to depth or geometry. This formulation naturally generalizes across scenes, learning powerful geometry and appearance priors in the process. We demonstrate the potential of SRNs by evaluating them for novel view synthesis, few-shot reconstruction, joint shape and appearance interpolation, and unsupervised discovery of a non-rigid face model.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset