Scaling simulation-to-real transfer by learning composable robot skills

09/26/2018
by   Ryan Julian, et al.
10

We present a novel solution to the problem of simulation-to-real transfer, which builds on recent advances in robot skill decomposition. Rather than focusing on minimizing the simulation-reality gap, we learn a set of diverse policies that are parameterized in a way that makes them easily reusable. This diversity and parameterization of low-level skills allows us to find a transferable policy that is able to use combinations and variations of different skills to solve more complex, high-level tasks. In particular, we first use simulation to jointly learn a policy for a set of low-level skills, and a "skill embedding" parameterization which can be used to compose them. Later, we learn high-level policies which actuate the low-level policies via this skill embedding parameterization. The high-level policies encode how and when to reuse the low-level skills together to achieve specific high-level tasks. Importantly, our method learns to control a real robot in joint-space to achieve these high-level tasks with little or no on-robot time, despite the fact that the low-level policies may not be perfectly transferable from simulation to real, and that the low-level skills were not trained on any examples of high-level tasks. We illustrate the principles of our method using informative simulation experiments. We then verify its usefulness for real robotics problems by learning, transferring, and composing free-space and contact motion skills on a Sawyer robot using only joint-space control. We experiment with several techniques for composing pre-learned skills, and find that our method allows us to use both learning-based approaches and efficient search-based planning to achieve high-level tasks using only pre-learned skills.

READ FULL TEXT

page 6

page 7

research
10/04/2018

Zero-Shot Skill Composition and Simulation-to-Real Transfer by Learning Task Representations

Simulation-to-real transfer is an important strategy for making reinforc...
research
07/20/2022

Towards Plug'n Play Task-Level Autonomy for Robotics Using POMDPs and Generative Models

To enable robots to achieve high level objectives, engineers typically w...
research
12/17/2022

Cascaded Compositional Residual Learning for Complex Interactive Behaviors

Real-world autonomous missions often require rich interaction with nearb...
research
06/14/2023

Language to Rewards for Robotic Skill Synthesis

Large language models (LLMs) have demonstrated exciting progress in acqu...
research
01/19/2023

Keyframe Demonstration Seeded and Bayesian Optimized Policy Search

This paper introduces a novel Learning from Demonstration framework to l...
research
02/19/2018

Learning High-level Representations from Demonstrations

Hierarchical learning (HL) is key to solving complex sequential decision...
research
11/23/2020

From Pixels to Legs: Hierarchical Learning of Quadruped Locomotion

Legged robots navigating crowded scenes and complex terrains in the real...

Please sign up or login with your details

Forgot password? Click here to reset