Scaling Configuration of Energy Harvesting Sensors with Reinforcement Learning

11/27/2018
by   Francesco Fraternali, et al.
0

With the advent of the Internet of Things (IoT), an increasing number of energy harvesting methods are being used to supplement or supplant battery based sensors. Energy harvesting sensors need to be configured according to the application, hardware, and environmental conditions to maximize their usefulness. As of today, the configuration of sensors is either manual or heuristics based, requiring valuable domain expertise. Reinforcement learning (RL) is a promising approach to automate configuration and efficiently scale IoT deployments, but it is not yet adopted in practice. We propose solutions to bridge this gap: reduce the training phase of RL so that nodes are operational within a short time after deployment and reduce the computational requirements to scale to large deployments. We focus on configuration of the sampling rate of indoor solar panel based energy harvesting sensors. We created a simulator based on 3 months of data collected from 5 sensor nodes subject to different lighting conditions. Our simulation results show that RL can effectively learn energy availability patterns and configure the sampling rate of the sensor nodes to maximize the sensing data while ensuring that energy storage is not depleted. The nodes can be operational within the first day by using our methods. We show that it is possible to reduce the number of RL policies by using a single policy for nodes that share similar lighting conditions.

READ FULL TEXT
research
09/04/2019

ACES -- Automatic Configuration of Energy Harvesting Sensors with Reinforcement Learning

Internet of Things forms the backbone of modern building applications. W...
research
11/21/2020

Computation harvesting in road traffic dynamics

Owing to recent advances in artificial intelligence and internet of thin...
research
05/10/2019

Autonomous Management of Energy-Harvesting IoT Nodes Using Deep Reinforcement Learning

Reinforcement learning (RL) is capable of managing wireless, energy-harv...
research
11/27/2018

Pible: Battery-Free Mote for Perpetual Indoor BLE Applications

Smart building applications require a large-scale deployment of sensors ...
research
06/06/2018

Optimization vs. Reinforcement Learning for Wirelessly Powered Sensor Networks

We consider a sensing application where the sensor nodes are wirelessly ...
research
05/11/2018

Reinforcement Learning based Multi-Access Control and Battery Prediction with Energy Harvesting in IoT Systems

Energy harvesting (EH) is a promising technique to fulfill the long-term...
research
06/28/2019

Towards Large-Scale Autonomous Wireless Sensor Networks

Wireless Sensor Networks (WSNs) have the goal of gathering data from the...

Please sign up or login with your details

Forgot password? Click here to reset