Scaling active inference

11/24/2019
by   Alexander Tschantz, et al.
0

In reinforcement learning (RL), agents often operate in partially observed and uncertain environments. Model-based RL suggests that this is best achieved by learning and exploiting a probabilistic model of the world. 'Active inference' is an emerging normative framework in cognitive and computational neuroscience that offers a unifying account of how biological agents achieve this. On this framework, inference, learning and action emerge from a single imperative to maximize the Bayesian evidence for a niched model of the world. However, implementations of this process have thus far been restricted to low-dimensional and idealized situations. Here, we present a working implementation of active inference that applies to high-dimensional tasks, with proof-of-principle results demonstrating efficient exploration and an order of magnitude increase in sample efficiency over strong model-free baselines. Our results demonstrate the feasibility of applying active inference at scale and highlight the operational homologies between active inference and current model-based approaches to RL.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro