Scale Guided Hypernetwork for Blind Super-Resolution Image Quality Assessment

06/04/2023
by   Jun Fu, et al.
0

With the emergence of image super-resolution (SR) algorithm, how to blindly evaluate the quality of super-resolution images has become an urgent task. However, existing blind SR image quality assessment (IQA) metrics merely focus on visual characteristics of super-resolution images, ignoring the available scale information. In this paper, we reveal that the scale factor has a statistically significant impact on subjective quality scores of SR images, indicating that the scale information can be used to guide the task of blind SR IQA. Motivated by this, we propose a scale guided hypernetwork framework that evaluates SR image quality in a scale-adaptive manner. Specifically, the blind SR IQA procedure is divided into three stages, i.e., content perception, evaluation rule generation, and quality prediction. After content perception, a hypernetwork generates the evaluation rule used in quality prediction based on the scale factor of the SR image. We apply the proposed scale guided hypernetwork framework to existing representative blind IQA metrics, and experimental results show that the proposed framework not only boosts the performance of these IQA metrics but also enhances their generalization abilities. Source code will be available at https://github.com/JunFu1995/SGH.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset