Scalars are universal: Gauge-equivariant machine learning, structured like classical physics

by   Soledad Villar, et al.

There has been enormous progress in the last few years in designing conceivable (though not always practical) neural networks that respect the gauge symmetries – or coordinate freedom – of physical law. Some of these frameworks make use of irreducible representations, some make use of higher order tensor objects, and some apply symmetry-enforcing constraints. Different physical laws obey different combinations of fundamental symmetries, but a large fraction (possibly all) of classical physics is equivariant to translation, rotation, reflection (parity), boost (relativity), and permutations. Here we show that it is simple to parameterize universally approximating polynomial functions that are equivariant under these symmetries, or under the Euclidean, Lorentz, and Poincaré groups, at any dimensionality d. The key observation is that nonlinear O(d)-equivariant (and related-group-equivariant) functions can be expressed in terms of a lightweight collection of scalars – scalar products and scalar contractions of the scalar, vector, and tensor inputs. These results demonstrate theoretically that gauge-invariant deep learning models for classical physics with good scaling for large problems are feasible right now.


page 1

page 2

page 3

page 4


Hierarchical Learning in Euclidean Neural Networks

Equivariant machine learning methods have shown wide success at 3D learn...

Machine Learning Lie Structures Applications to Physics

Classical and exceptional Lie algebras and their representations are amo...

GeometricImageNet: Extending convolutional neural networks to vector and tensor images

Convolutional neural networks and their ilk have been very successful fo...

Rotationally Equivariant Neural Operators for Learning Transformations on Tensor Fields (eg 3D Images and Vector Fields)

We introduce equivariant neural operators for learning resolution invari...

Parsimonious neural networks learn classical mechanics, its underlying symmetries, and an accurate time integrator

Machine learning is playing an increasing role in the physical sciences ...

Geometric Algebra Attention Networks for Small Point Clouds

Much of the success of deep learning is drawn from building architecture...

Please sign up or login with your details

Forgot password? Click here to reset