Scalable Solution for Approximate Nearest Subspace Search

03/29/2016
by   Masakazu Iwamura, et al.
0

Finding the nearest subspace is a fundamental problem and influential to many applications. In particular, a scalable solution that is fast and accurate for a large problem has a great impact. The existing methods for the problem are, however, useless in a large-scale problem with a large number of subspaces and high dimensionality of the feature space. A cause is that they are designed based on the traditional idea to represent a subspace by a single point. In this paper, we propose a scalable solution for the approximate nearest subspace search (ANSS) problem. Intuitively, the proposed method represents a subspace by multiple points unlike the existing methods. This makes a large-scale ANSS problem tractable. In the experiment with 3036 subspaces in the 1024-dimensional space, we confirmed that the proposed method was 7.3 times faster than the previous state-of-the-art without loss of accuracy.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro