Scalable Mining of Maximal Quasi-Cliques: An Algorithm-System Codesign Approach

04/30/2020 ∙ by Guimu Guo, et al. ∙ 0

Given a user-specified minimum degree threshold γ, a γ-quasi-clique is a subgraph where each vertex connects to at least γ fraction of the other vertices. Mining maximal quasi-cliques is notoriously expensive with the state-of-the-art algorithm scaling only to small graphs with thousands of vertices. This has hampered its popularity in real applications involving big graphs. We developed a task-based system called G-thinker for massively parallel graph mining, which is the first graph mining system that scales with the number of CPU cores. G-thinker provides a unique opportunity to scale the compute-intensive quasi-clique mining. This paper designs parallel algorithms for mining maximal quasi-cliques on G-thinker that scale to big graphs. Our algorithms follow the idea of divide and conquer which partitions the problem of mining a big graph into tasks that mine smaller subgraphs. However, we find that a direct application of G-thinker is insufficient due to the drastically different running time of different tasks that violates the original design assumption of G-thinker, requiring a system reforge. We also observe that the running time of a task is highly unpredictable solely from the features extracted from its subgraph, leading to difficulty in pinpoint expensive tasks to decompose for concurrent processing, and size-threshold based partitioning under-partitions some tasks but over-partitions others, leading to bad load balancing and enormous task partitioning overheads. We address this issue by proposing a novel time-delayed divide-and-conquer strategy that strikes a balance between the workloads spent on actual mining and the cost of balancing the workloads. Extensive experiments verify that our G-thinker algorithm scales perfectly with the number of CPU cores, achieving over 300x speedup when running on a graph with over 1M vertices in a small cluster.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 10

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.