Scalable methods for computing state similarity in deterministic Markov Decision Processes

11/21/2019 ∙ by Pablo Samuel Castro, et al. ∙ 49

We present new algorithms for computing and approximating bisimulation metrics in Markov Decision Processes (MDPs). Bisimulation metrics are an elegant formalism that capture behavioral equivalence between states and provide strong theoretical guarantees on differences in optimal behaviour. Unfortunately, their computation is expensive and requires a tabular representation of the states, which has thus far rendered them impractical for large problems. In this paper we present a new version of the metric that is tied to a behavior policy in an MDP, along with an analysis of its theoretical properties. We then present two new algorithms for approximating bisimulation metrics in large, deterministic MDPs. The first does so via sampling and is guaranteed to converge to the true metric. The second is a differentiable loss which allows us to learn an approximation even for continuous state MDPs, which prior to this work had not been possible.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 5

page 7

page 12

page 13

page 14

page 15

page 16

page 17

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.