Scalable Information-Flow Analysis of Secure Three-Party Affine Computations
Elaborate protocols in Secure Multi-party Computation enable several participants to compute a public function of their own private inputs while ensuring that no undesired information leaks about the private inputs, and without resorting to any trusted third party. However, the public output of the computation inevitably leaks some information about the private inputs. Recent works have introduced a framework and proposed some techniques for quantifying such information flow. Yet, owing to their complexity, those methods do not scale to practical situations that may involve large input spaces. The main contribution of the work reported here is to formally investigate the information flow captured by the min-entropy in the particular case of secure three-party computations of affine functions in order to make its quantification scalable to realistic scenarios. To this end, we mathematically derive an explicit formula for this entropy under uniform prior beliefs about the inputs. We show that this closed-form expression can be computed in time constant in the inputs sizes and logarithmic in the coefficients of the affine function. Finally, we formulate some theoretical bounds for this privacy leak in the presence of non-uniform prior beliefs.
READ FULL TEXT