Scalable inference in functional linear regression with streaming data
Traditional static functional data analysis is facing new challenges due to streaming data, where data constantly flow in. A major challenge is that storing such an ever-increasing amount of data in memory is nearly impossible. In addition, existing inferential tools in online learning are mainly developed for finite-dimensional problems, while inference methods for functional data are focused on the batch learning setting. In this paper, we tackle these issues by developing functional stochastic gradient descent algorithms and proposing an online bootstrap resampling procedure to systematically study the inference problem for functional linear regression. In particular, the proposed estimation and inference procedures use only one pass over the data; thus they are easy to implement and suitable to the situation where data arrive in a streaming manner. Furthermore, we establish the convergence rate as well as the asymptotic distribution of the proposed estimator. Meanwhile, the proposed perturbed estimator from the bootstrap procedure is shown to enjoy the same theoretical properties, which provide the theoretical justification for our online inference tool. As far as we know, this is the first inference result on the functional linear regression model with streaming data. Simulation studies are conducted to investigate the finite-sample performance of the proposed procedure. An application is illustrated with the Beijing multi-site air-quality data.
READ FULL TEXT