Scalable Block-Diagonal Locality-Constrained Projective Dictionary Learning

05/25/2019 ∙ by Zhao Zhang, et al. ∙ 0

We propose a novel structured discriminative block-diagonal dictionary learning method, referred to as scalable Locality-Constrained Projective Dictionary Learning (LC-PDL), for efficient representation and classification. To improve the scalability by saving both training and testing time, our LC-PDL aims at learning a structured discriminative dictionary and a block-diagonal representation without using costly l0/l1-norm. Besides, it avoids extra time-consuming sparse reconstruction process with the well-trained dictionary for new sample as many existing models. More importantly, LC-PDL avoids using the complementary data matrix to learn the sub-dictionary over each class. To enhance the performance, we incorporate a locality constraint of atoms into the DL procedures to keep local information and obtain the codes of samples over each class separately. A block-diagonal discriminative approximation term is also derived to learn a discriminative projection to bridge data with their codes by extracting the special block-diagonal features from data, which can ensure the approximate coefficients to associate with its label information clearly. Then, a robust multiclass classifier is trained over extracted block-diagonal codes for accurate label predictions. Experimental results verify the effectiveness of our algorithm.



There are no comments yet.


page 3

page 6

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.