Scalable Approximations for Generalized Linear Problems

11/21/2016
by   Murat A. Erdogdu, et al.
0

In stochastic optimization, the population risk is generally approximated by the empirical risk. However, in the large-scale setting, minimization of the empirical risk may be computationally restrictive. In this paper, we design an efficient algorithm to approximate the population risk minimizer in generalized linear problems such as binary classification with surrogate losses and generalized linear regression models. We focus on large-scale problems, where the iterative minimization of the empirical risk is computationally intractable, i.e., the number of observations n is much larger than the dimension of the parameter p, i.e. n ≫ p ≫ 1. We show that under random sub-Gaussian design, the true minimizer of the population risk is approximately proportional to the corresponding ordinary least squares (OLS) estimator. Using this relation, we design an algorithm that achieves the same accuracy as the empirical risk minimizer through iterations that attain up to a cubic convergence rate, and that are cheaper than any batch optimization algorithm by at least a factor of O(p). We provide theoretical guarantees for our algorithm, and analyze the convergence behavior in terms of data dimensions. Finally, we demonstrate the performance of our algorithm on well-known classification and regression problems, through extensive numerical studies on large-scale datasets, and show that it achieves the highest performance compared to several other widely used and specialized optimization algorithms.

READ FULL TEXT

page 1

page 2

page 3

page 4

research
04/25/2021

Performance of Empirical Risk Minimization for Linear Regression with Dependent Data

This paper establishes bounds on the performance of empirical risk minim...
research
06/25/2020

STORM: Foundations of End-to-End Empirical Risk Minimization on the Edge

Empirical risk minimization is perhaps the most influential idea in stat...
research
05/11/2018

Randomized Smoothing SVRG for Large-scale Nonsmooth Convex Optimization

In this paper, we consider the problem of minimizing the average of a la...
research
02/18/2017

A Hitting Time Analysis of Stochastic Gradient Langevin Dynamics

We study the Stochastic Gradient Langevin Dynamics (SGLD) algorithm for ...
research
11/28/2015

Newton-Stein Method: An optimization method for GLMs via Stein's Lemma

We consider the problem of efficiently computing the maximum likelihood ...
research
07/22/2016

The Landscape of Empirical Risk for Non-convex Losses

Most high-dimensional estimation and prediction methods propose to minim...
research
07/03/2019

Quickly Finding the Best Linear Model in High Dimensions

We study the problem of finding the best linear model that can minimize ...

Please sign up or login with your details

Forgot password? Click here to reset