Scalable Algorithms for Parallel Tree-based Adaptive Mesh Refinement with General Element Types

03/13/2018
by   Johannes Holke, et al.
0

In this thesis, we develop, discuss and implement algorithms for scalable parallel tree-based adaptive mesh refinement (AMR) using space-filling curves (SFCs). We create an AMR framework that works independently of the used element type, such as for example lines, triangles, tetrahedra, quadrilaterals, hexahedra, and prisms. Along with a detailed mathematical discussion, this requires the implementation as a numerical software and its validation, as well as scalability tests on current supercomputers. For triangular and tetrahedral elements (simplices) with red-refinement (1:4 in 2D, 1:8 in 3D), we develop a new SFC index, the tetrahedral Morton index (TM-index). Its construction is similar to the Morton index for quadrilaterals/hexahedra, as it is also based on bitwise interleaving the coordinates of a certain vertex of the simplex, the anchor node.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro