SASG: Sparsification with Adaptive Stochastic Gradients for Communication-efficient Distributed Learning
Stochastic optimization algorithms implemented on distributed computing architectures are increasingly used to tackle large-scale machine learning applications. A key bottleneck in such distributed systems is the communication overhead for exchanging information such as stochastic gradients between different workers. Sparse communication with memory and the adaptive aggregation methodology are two successful frameworks among the various techniques proposed to address this issue. In this paper, we creatively exploit the advantages of Sparse communication and Adaptive aggregated Stochastic Gradients to design a communication-efficient distributed algorithm named SASG. Specifically, we first determine the workers that need to communicate based on the adaptive aggregation rule and then sparse this transmitted information. Therefore, our algorithm reduces both the overhead of communication rounds and the number of communication bits in the distributed system. We define an auxiliary sequence and give convergence results of the algorithm with the help of Lyapunov function analysis. Experiments on training deep neural networks show that our algorithm can significantly reduce the number of communication rounds and bits compared to the previous methods, with little or no impact on training and testing accuracy.
READ FULL TEXT