SAR Image Despeckling Using a Convolutional

06/02/2017
by   Puyang Wang, et al.
0

Synthetic Aperture Radar (SAR) images are often contaminated by a multiplicative noise known as speckle. Speckle makes the processing and interpretation of SAR images difficult. We propose a deep learning-based approach called, Image Despeckling Convolutional Neural Network (ID-CNN), for automatically removing speckle from the input noisy images. In particular, ID-CNN uses a set of convolutional layers along with batch normalization and rectified linear unit (ReLU) activation function and a component-wise division residual layer to estimate speckle and it is trained in an end-to-end fashion using a combination of Euclidean loss and Total Variation (TV) loss. Extensive experiments on synthetic and real SAR images show that the proposed method achieves significant improvements over the state-of-the-art speckle reduction methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro