Sampling from the Sherrington-Kirkpatrick Gibbs measure via algorithmic stochastic localization

03/10/2022
by   Ahmed El Alaoui, et al.
0

We consider the Sherrington-Kirkpatrick model of spin glasses at high-temperature and no external field, and study the problem of sampling from the Gibbs distribution μ in polynomial time. We prove that, for any inverse temperature β<1/2, there exists an algorithm with complexity O(n^2) that samples from a distribution μ^alg which is close in normalized Wasserstein distance to μ. Namely, there exists a coupling of μ and μ^alg such that if (x,x^alg)∈{-1,+1}^n×{-1,+1}^n is a pair drawn from this coupling, then n^-1𝔼{||x-x^alg||_2^2}=o_n(1). The best previous results, by Bauerschmidt and Bodineau and by Eldan, Koehler, and Zeitouni, implied efficient algorithms to approximately sample (under a stronger metric) for β<1/4. We complement this result with a negative one, by introducing a suitable "stability" property for sampling algorithms, which is verified by many standard techniques. We prove that no stable algorithm can approximately sample for β>1, even under the normalized Wasserstein metric. Our sampling method is based on an algorithmic implementation of stochastic localization, which progressively tilts the measure μ towards a single configuration, together with an approximate message passing algorithm that is used to approximate the mean of the tilted measure.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset