# Sampling discretization of integral norms

The paper is devoted to discretization of integral norms of functions from a given finite dimensional subspace. Even though this problem is extremely important in applications, its systematic study has begun recently. In this paper we obtain a conditional theorem for all integral norms L_q, 1< q<∞, which is an extension of known results for q=1. To discretize the integral norms successfully, we introduce a new technique, which is a combination of probabilistic technique with results on the entropy numbers in the uniform norm. As an application of the general conditional theorem, we derive a new Marcinkiewicz type discretization for the multivariate trigonometric polynomials with frequencies from the hyperbolic crosses.

READ FULL TEXT