Sampling Attacks: Amplification of Membership Inference Attacks by Repeated Queries

09/01/2020
by   Shadi Rahimian, et al.
0

Machine learning models have been shown to leak information violating the privacy of their training set. We focus on membership inference attacks on machine learning models which aim to determine whether a data point was used to train the victim model. Our work consists of two sides: We introduce sampling attack, a novel membership inference technique that unlike other standard membership adversaries is able to work under severe restriction of no access to scores of the victim model. We show that a victim model that only publishes the labels is still susceptible to sampling attacks and the adversary can recover up to 100 The other sides of our work includes experimental results on two recent membership inference attack models and the defenses against them. For defense, we choose differential privacy in the form of gradient perturbation during the training of the victim model as well as output perturbation at prediction time. We carry out our experiments on a wide range of datasets which allows us to better analyze the interaction between adversaries, defense mechanism and datasets. We find out that our proposed fast and easy-to-implement output perturbation technique offers good privacy protection for membership inference attacks at little impact on utility.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset