SAMOT: Switcher-Aware Multi-Object Tracking and Still Another MOT Measure

09/22/2020 ∙ by Weitao Feng, et al. ∙ 5

Multi-Object Tracking (MOT) is a popular topic in computer vision. However, identity issue, i.e., an object is wrongly associated with another object of a different identity, still remains to be a challenging problem. To address it, switchers, i.e., confusing targets thatmay cause identity issues, should be focused. Based on this motivation,this paper proposes a novel switcher-aware framework for multi-object tracking, which consists of Spatial Conflict Graph model (SCG) and Switcher-Aware Association (SAA). The SCG eliminates spatial switch-ers within one frame by building a conflict graph and working out the optimal subgraph. The SAA utilizes additional information from potential temporal switcher across frames, enabling more accurate data association. Besides, we propose a new MOT evaluation measure, Still Another IDF score (SAIDF), aiming to focus more on identity issues.This new measure may overcome some problems of the previous measures and provide a better insight for identity issues in MOT. Finally,the proposed framework is tested under both the traditional measures and the new measure we proposed. Extensive experiments show that ourmethod achieves competitive results on all measure.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 2

page 7

page 16

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.