Safe Screening Rules for Generalized Double Sparsity Learning

06/11/2020
by   Xinyu Zhang, et al.
0

In a high-dimensional setting, sparse model has shown its power in computational and statistical efficiency. We consider variables selection problem with a broad class of simultaneous sparsity regularization, enforcing both feature-wise and group-wise sparsity at the same time. The analysis leverages an introduction of ϵ q-norm in vector space, which is proved to has close connection with the mixture regularization and naturally leads to a dual formulation. Properties of primal/dual optimal solution and optimal values are discussed, which motivates the design of screening rules. We several fast safe screening rules in the general framework, rules that discard inactive features/groups at an early stage that are guaranteed to be inactive in the exact solution, leading to a significant gain in computation speed.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro